Congestion Analysis

Physical Design Analysis


Congestion Analysis

  • As the Technology advances, millions of transistors can be packed onto the surface of a chip
  • Thus the increased circuit density introduces additional Congestion
  • Intuitively speaking, Congestion in a layout means too many nets are routed in local regions
  • This causes detoured nets and un-routable nets in Detailed Routing

  • Congestion Analysis
    • Routing Congestion Analysis
      • Congestion in general referred to Routing Congestion
      • Routing congestion is the difference between supplied and available tracks
      • A track is nothing but a routing resource which fills the entire Core

    • Placement Congestion Analysis
      • Placement Congestion is due to overlap of Standard Cells, it is called Overlappingrather than called as Congestion
      • Overlapping issue can be fixed by aligning cells to the Placement Grid by Legalization
  • In recent years, several congestion estimation and removal methods have been proposed
  • They fall into two categories: Congestion estimation and removal during global routing stage, and Congestion estimation and removal during Placement stage
  • To estimate Congestion, tool does Initial/ Global Routing
  • Congestion reports are generated after each Routing stages which shows the difference between supplied and demanded Tracks or G-cells
  • Overflow = Routing Demand - Routing Supply (0% otherwise)
  • Usually starts the initial Target Utilization with 65% to 70%
  • 7/3 in a 2D congestion map : There are 7 routes that are passing through a particular edge of a Global Route Cell (GRC), but there are only 3 routing tracks available. There is an overflow of 4.

Causes for Routing Congestion

  • Missing Placement Blockages
  • Inefficient floorplan
  • Improper macro placement and macro channels (Placing macros in the middle of floorplan etc.)
  • Floorplan the macros without giving routing space for interconnection between macros
  • High Cell Density (High local utilization)
  • If your design had more number of AOI/OAI cells you will see this congestion issue
  • Placement of standard cells near macros
  • High pin density on one edge of block
  • Too many buffers added for optimization
  • No proper logic optimization
  • Very Robust Power network
  • High via density due to dense power mesh
  • Crisscross IO pin alignment is also a problem
  • Module splitting
congestion in physical design

Congestion Fixes

  • Add placement blockages in channels and around macro corners
  • Review the macro placement
  • Reduce local cell density using density screens
  • Reordering scan chain to reduce congestion
  • Congestion driven placement with high effort
  • Continue the iterations until good congestion results
  • Density screen is applied to limit the density of standard cells in an area to reduce congestion due high pin density





congestion fixes in physical design

  • Routing congestion, results when too many routes need to go through an area with insufficient “routing tracks” to accommodate them routing cpngestion
  • Two major categories: Global Congestion and Local Congestion
    • Global Congestion: This occurs when there are a lot of chip-level or interblock wires that need to cross an area
    • Local Congestion: This occurs when the floorplan has macros and other routing blockages that are too close together to get enough routes through to connect to the macros

Congestion Profiles

congestion profiles, global local congestion

  • What is synthesis?
  • Goals of synthesis
  • Synthesis Flow
  • Synthesis (input & output)
  • HDL file gen. & lib setup
  • Reading files
  • Design envi. Constraints
  • Compile
  • Generate Reports
  • Write files
Go To page
  • Netlist(.v or .vhd)
  • Constraints
  • Liberty Timing File(.lib or .db)
  • Library Exchange Format(LEF)
  • Technology Related files
  • TLU+ File
  • Milkyway Library
  • Power Specification File
  • Optimization Directives
  • Design Exchange Formats
  • Clock Tree Constraints/ Specification
  • IO Information File
Go To page
  • import design
  • sanity checks
  • partitioning (flat and hierarchy)
  • objectives of floorplan
  • Inputs of floorplan
  • Floorplan flowchart
  • Floorplan Techniques
  • Terminologies and definitions
  • Steps in FloorPlan
  • Utilization
  • IO Placement
  • Macro Placement
  • Macro Placement Tips
  • Blockages (soft,hard,partial)
  • Halo/keepout margin
  • Issues arises due to bad floor-plan)
  • FloorPlan Qualifications
  • FloorPlan Output
Go To page
  • levels of power distribution
  • Power Management
  • Powerplanning involves
  • Inputs of powerplan
  • Properties of ideal powerplan
  • Power Information
  • PowerPlan calculations
  • Sub-Block configuration
  • fullchip configuration
  • UPF Content
  • Isolation Cell
  • Level Shifters
  • Retention Registers
  • Power Switches
  • Types of Power dissipation
  • IR Drop
  • Electromigration
Go To page
  • Pre-Placement
  • Pre-Placement Optimization
  • Placement
  • Placement Objectives
  • Goals of Placement
  • Inputs of Placement
  • Checks Before placement
  • Placement Methods(Timing & Congestion)
  • Placement Steps
  • Placement Optimization
  • Placement Qualifications
  • Placement Outputs
Go To page
  • Pre-CTS Optimization
  • CTS
  • Diff b/w HFNS & CTS
  • Diff b/w Clock & normal buffer
  • CTS inputs
  • CTS Goals
  • Clock latency
  • Clock problems
  • Main concerns for Clock design
  • Clock Skew
  • Clock Jitter
  • CTS Pre requisites
  • CTS Objects
  • CTS Flow
  • Clock Tree Reference
  • Clock Tree Exceptions
  • CTS Algorithm
  • Analyze the Clock tree
  • Post CTS Optimization
  • CTS Outputs
Go To page
  • Importance of Routing as Technology Shrinks
  • Routing Objectives
  • Routing
  • Routing Inputs
  • Routing Goals
  • Routing constraints
  • Routing Flow
  • Trial/Global Routing
  • Track Assignment
  • Detail/Nano Routing
  • Grid based Routing
  • Routing Preferences
  • Post Routing Optimization
  • Filler Cell Insertion
  • Metal Fill
  • Spare Cells Tie-up/ Tie-down
Go To page
  • Diff b/w DTA & STA
  • Static Timing Analysis
  • main steps in STA
  • STA(input & output)
  • Timing Report
  • Clocked storage elements
  • Delays
  • Pins related to clock
  • Timing Arc
  • Timing Unate
  • Clock definitions in STA
  • Timing Paths
  • Timing Path Groups
  • Clock Latency
  • Insertion Delay
  • Clock Uncertainty
  • Clock Skew
  • Clock Jitter
  • Glitch
  • Pulse width
  • Duty Cycle
  • Transition/Slew
  • Asynchronous Path
  • Critical Path
  • Shortest Path
  • Clock Gating Path
  • Launch path
  • Arrival Path
  • Required Time
  • Common Path Pessimism(CPP/CRPR)
  • Slack
  • Setup and Hold time
  • Setup & hold time violations
  • Recovery Time
  • Removal Time
  • Recovery & Removal time violations
  • Single Cycle path
  • Multi Cycle Path
  • Half Cycle Path
  • False Path
  • Clock Domain Crossing(CDC)
  • Clock Domain Synchronization Scheme
  • Bottleneck Analysis
  • Multi-VT Cells(HVT LVT SVT)
  • Time Borrowing/Stealing
  • Types of STA (PBA GBA)
  • Diff b/w PBA & GBA
  • Block based STA & Path based STA
Go To page

  • Congestion Analysis
  • Routing Congestion Analysis
  • Placement Cong. Analysis
  • Routing Congestion causes
  • Congestion Fixes
  • Global & local cong.
  • Congestion Profiles
Go To page
  • Power Analysis
  • Leakeage Power
  • Switching Power
  • Short Circuit
  • Leakage/static Power
  • Static power Dissipation
  • Types of Static Leakage
  • Static Power Reduction Techniques
  • Dynamic/Switching Power
  • Dynamic Power calculation depends on
  • Types of Dynamic Power
  • Dynamic Power Reduction Techniques
Go To page
  • IR Drop Analysis
  • Types of IR Drop & their methodologies
  • IR Drop Reasons
  • IR Drop Robustness Checks
  • IR Drop Impacts
  • IR Drop Remedies
  • Ldi/dt Effects
Go To page

  • Design Parasitics
  • Latch-Up
  • Electrostatic Discharge(ESD)
  • Electromigration
  • Antenna Effect
  • Crosstalk
  • Soft Errors
  • Sef Heating
Go To page
  • Cells in PD
  • Standard Cells
  • ICG Cells
  • Well Taps
  • End Caps
  • Filler Cells
  • Decap Cells
  • ESD Clamp
  • Spare Cells
  • Tie Cells
  • Delay Cells
  • Metrology Cells
Go To page
  • IO Pads
  • Types of IO Pads
Go To page
  • Delay Calculation
  • Delay Models
  • Interconnect Delay Models
  • Cell Delay Models
Go To page
  • Engineering Change Order
  • Post Synthesis ECO
  • Post Route ECO
  • Post Silicon ECO
  • Metal Layer ECO Example
Go To page
  • std cell library types
  • Classification wrt density and Vth
Go To page

  • The Discontinuity
  • Discontinuity: Classification
  • DFM/DFY
  • Yield Classification
  • Why DFM/DFY?
  • DFM/DFY Solution
  • Wire Spreading
  • metal Fill
  • CAA
  • CMP Aware-Design
  • Redundant Via
  • RET
  • Litho Process Check(LPC)
  • Layout Dependent Effects
  • Resolution Enhancement Techniques
  • Types of RET
  • Optical Proximity Correction(OPC)
  • Scattering Bars
  • Multiple Patterning
  • Phase-shift Masking
  • Off-Axis Illumination
Go To page
  • Corners
  • Need for corner analysis
  • PVT Variations
  • Corner Analysis
  • PVT/RC Corners
  • Temperature Inversion
  • Cross Corner Analysis
  • Modes of Analysis
  • MC/MM Analysis
  • OCV
  • Derating
  • OCV Timing Checks
  • OCV Enhancements
  • AOCV
  • SSTA
  • CRPR/CPPR
Go To page
Copyright © 2021